tutorified

3.OA.A. 1 Relating Addition and Multiplication

3.OA.A.1: Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each.

Equal Groups	Think:	Addition Sentence	Multiplication Sentence
$\bigcirc \bigcirc$	5 groups of 2	$2+2+2+2+2=10$	$2 \times 5=10$
$\bigcirc \bigcirc$			

Use counters to model. Then write an addition and multiplication sentence for each.

1. $\mathbf{3}$ groups of $\mathbf{4}$

Addition Sentence: \qquad
Multiplication Sentence: \qquad

2. 5 groups of 4

Addition Sentence: \qquad
Multiplication Sentence: \qquad

Write a multiplication sentence for each.

What is another way to show $6+6+6$? \qquad
a. 6×3
b. 6×5
c. 4×6
d. 6×2

What is another way to show $\mathbf{5}+\mathbf{5}+\mathbf{5}+\mathbf{5}+\mathbf{5}$? \qquad
a. 5×3
b. 5×5
c. 5×6
d. 5×2

tutorified

3.OA.A.1: Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each.

Equal Groups	Think:	Addition Sentence	Multiplication Sentence
$\bigcirc \bigcirc$	5 groups of 2	$2+2+2+2+2=10$	$2 \times 5=10$
$\bigcirc \bigcirc$			

Use counters to model. Then write an addition and multiplication sentence for each.

1. $\mathbf{3}$ groups of $\mathbf{4}$

Addition Sentence: \qquad $4+4+4=12$
Multiplication Sentence: \qquad $4 \times 3=12$

2. 5 groups of 4

Addition Sentence: $4+4+4+4+4=20$
Multiplication Sentence: \qquad

Write a multiplication sentence for each.

$\Delta \Delta \Delta \Delta \Delta \Delta$	$\begin{array}{cccc} \circ \bigcirc O & \bigcirc \bigcirc \\ \bigcirc \bigcirc \bigcirc & \bigcirc \bigcirc \\ 6 \times 2=12 \\ \hline \end{array}$	5x2=10
$3+3+3=9$	$4+4+4+4=16$	$5+5+5+5=20$
$3 \times 3=9$	$4 \times 4=16$	$5 \times 4=20$

What is another way to show $6+6+6$? \qquad
a. 6×3
b. 6×5
c. 4×6
d. 6×2

What is another way to show $\mathbf{5}+\mathbf{5}+\mathbf{5}+\mathbf{5}+\mathbf{5}$? \qquad b.
a. 5×3
b. 5×5
c. 5×6
d. 5×2

