tutorified

4.NF.A. 1 Equivalent Fractions Models

4.NF.A.1: Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$

1. Identify pairs of equivalent fractions from the models below.
a.

b.

c.

Solution:

Carol's Ball	
Color	Number
Purple	7
Green	8
Red	10
Orange	5

Solution:

a.
b.
c.
3. Write an equivalent fraction for each of the following. Also, write the fraction in its simplest form.
a. $\frac{6}{10}$
b. $\frac{3}{9}$
b. $\frac{22}{44}$
c. $\frac{10}{24}$
e. $\frac{21}{27}$
f. $\frac{18}{22}$

Solution:
a.
b.
c.
d.
e.
f.
4. Which of the two fractions are equivalent?
a.
$\frac{3}{4}, \frac{8}{12}$
b. $\frac{2}{13}, \frac{4}{22}$
c. $\frac{1}{3}, \frac{6}{18}$
d. $\frac{2}{3}, \frac{4}{10}$
Solution:
a. $\frac{3}{4}$
b. $\frac{7}{28}$
c. $\frac{6}{8}$
d. $\frac{2}{14}$

Solution:

tutorified

4.NF.A. 1 Equivalent Fractions Models

4.NF.A.1: Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$

1. Identify pairs of equivalent fractions from the models below.
a.

b.

c.

B and C
2. Use the table to answer the questions.
a. What fraction of Carol's ball is orange? Write in simplest form.
b. What fraction of Carol's ball is red? Write an equivalent fraction.
c. What fraction of Carol's ball is the total of purple and green?
Write in simplest form.

Carol's Ball	
Color	Number
Purple	7
Green	8
Red	10
Orange	5

Solution:

a. $\frac{1}{6}$
b. $\frac{1}{3}$
c. $\frac{1}{2}$
3. Write an equivalent fraction for each of the following. Also, write the fraction in its simplest form.
a. $\frac{6}{10}$
b. $\frac{3}{9}$
c. $\frac{10}{24}$
d. $\frac{22}{44}$
e. $\frac{21}{27}$
f. $\frac{18}{22}$
a. $\frac{12}{20}$; Simplest form $\frac{3}{5}$
b. $\frac{6}{18}$; Simplest form $\frac{1}{3}$
c. $\frac{20}{48}$; Simplest form $\frac{5}{12}$ f. $\frac{36}{44}$; Simplest form $\frac{9}{11}$
d. $\frac{44}{88}$; Simplest form $\frac{1}{2}$
e. $\frac{42}{54} ;$ Simplest form $\frac{7}{9}$
4. Which of the two fractions are equivalent?
a.
$\frac{3}{4}, \frac{8}{12}$
b. $\frac{2}{13}, \frac{4}{22}$
c. $\frac{1}{3}, \frac{6}{18}$
d. $\frac{2}{3}, \frac{4}{10}$
C
5. Which of the fractions is in simplest form?
a. $\frac{3}{4}$
b. $\frac{7}{28}$
c. $\frac{6}{8}$
d. $\frac{2}{14}$

