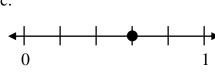

4.NF.A.1 Equivalent Fractions Using Visual Models


4.NF.A.1: Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$

1. Write two equivalent fractions for each model.

a.

Solution:

- a.
- b.
- c.
- 2. Write an equivalent fraction for each of the following. Also, write the fraction in its simplest form.

- b. $\frac{9}{15}$ c. $\frac{4}{16}$ d. $\frac{3}{12}$
- e. $\frac{18}{45}$ f. $\frac{8}{24}$ g. $\frac{6}{18}$ h. $\frac{4}{20}$

Solution:

- d. h.___

3. Which of the two fractions are equivalent?

$$\frac{1}{4}$$
, $\frac{8}{12}$

$$\frac{1}{3}$$
, $\frac{8}{28}$

$$\frac{1}{4}$$
, $\frac{8}{12}$ b. $\frac{1}{3}$, $\frac{8}{28}$ c. $\frac{1}{3}$, $\frac{4}{12}$

Solution:

- 4. Are the following fractions in the simplest form? If not, write in the simplest form
 - a. 3

- b. $\frac{7}{21}$ c. $\frac{6}{9}$ d. $\frac{12}{15}$

- Solution:

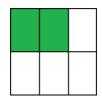
- 5. Use the table to answer the questions.
 - a. What fraction of Mandy's ball is blue? Write in simplest form.
 - b. What fraction of Mandy's ball is green? Write in simplest form.

Mandy's Ball	
Color	Number
Blue	10
Green	8
Yellow	6

Solution:

a.

b.


4.NF.A.1 Equivalent Fractions Using Visual Models

Answer Key

4.NF.A.1: Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$

1. Write two equivalent fractions for each model.

a.

b.

c.

Solution:

- a.
- b.
- c.

2. Write an equivalent fraction for each of the following. Also, write the fraction in its simplest form.

a.
$$\frac{4}{6}$$

b.
$$\frac{9}{15}$$

c.
$$\frac{4}{16}$$

a.
$$\frac{4}{6}$$
 b. $\frac{9}{15}$ c. $\frac{4}{16}$ d. $\frac{3}{12}$

e.
$$\frac{18}{45}$$
 f. $\frac{8}{24}$ g. $\frac{6}{18}$ h. $\frac{4}{20}$

f.
$$\frac{8}{24}$$

g.
$$\frac{6}{18}$$

h.
$$\frac{4}{20}$$

Solution:

a.
$$\frac{2}{3}$$
 e. $\frac{2}{5}$

b.
$$\frac{5}{1}$$
 f. $\frac{3}{1}$

$$\frac{1}{4}$$
 h. $\frac{1}{5}$

3. Which of the two fractions are equivalent?

a.
$$\frac{1}{4}$$
, $\frac{8}{12}$

$$\frac{1}{3}, \frac{8}{28}$$

c.
$$\frac{1}{3}$$
, $\frac{4}{12}$

d.
$$\frac{2}{3}$$
, $\frac{4}{9}$

4. Are the following fractions in the simplest form? If not, write in the simplest form

a.
$$\frac{3}{4}$$

c.
$$\frac{6}{9}$$

b.
$$\frac{7}{21}$$
 c. $\frac{6}{9}$ d. $\frac{12}{15}$

Solution:

- a. Yes
- b. No. 1/3
- c. No. 2/3
- d. No. 4/5

5. Use the table to answer the questions.

- a. What fraction of Mandy's ball is blue? Write in simplest form.
- b. What fraction of Mandy's ball is green? Write in simplest for

Mandy's Ball	
Color	Number
Blue	10
Green	8
Yellow	6

a.
$$\frac{5}{12}$$

b.
$$\frac{1}{3}$$