4.OA.B.4 Prime Factors

4.OA.B. 4 Find all factor pairs for a whole number in the range 1-100

1. Complete the factor tree to find the prime factors of 28 .

Solution:

$28=$ \qquad \times \qquad \times \qquad
2. Use additional blank paper to make factor trees. Find the prime factors.
a. 8
b. 12
c. 15
d. 20

Solution:
a.
b.
c.
d.

e. 22
f. 24
g. 27
h. 36
Solution:
e.
f.
g.
h.
3. Write TRUE if the number given below can be a prime factor of a number. Otherwise, write FALSE.
a. 2
b. 3
c. 4
d. 5
e. 6
f. 7
g. 8

Solution:

a.
b.
c.
d.
e.
f.
g.
4. Maxine says that prime factors of 50 are 2×25. Explain why she is incorrect. Make a factor tree to find the correct factors.
5. Which of these can be a prime factor of any other number?
A. 2
B. 4
C. 6
D. 9
6. Which of these are the prime factors of 60 ?
A. $2 \times 2 \times 5 \times 5$
B. $2 \times 2 \times 3 \times 5$
C. $4 \times 3 \times 5$
D. $2 \times 3 \times 3 \times 5$
7. How do you know when a factor tree branch cannot have any

Solution:

tutorified

4.OA.B.4 Prime Factors

Answer Key

4.OA.B. 4 Find all factor pairs for a whole number in the range 1-100

1. Complete the factor tree to find the prime factors of 28.

Solution:

$28=$ \qquad
\qquad
\qquad 7
2. Use additional blank paper to make factor trees. Find the prime factors.
a. 8
b. 12
c. 15

Solution:
e. 22
f. 24
a. $2 \times 2 \times 2$
b. $2 \times 2 \times 3$
c. 3×5
d. $2 \times 2 \times 5$
g. 27
h. 36

Solution:

e. 2×11
d. 20
f. $2 \times 2 \times 2 \times 3$
g. $3 \times 3 \times 3$
h. $2 \times 2 \times 3 \times 3$
3. Write TRUE if the number given below can be a prime factor of a number. Otherwise, write FALSE.
a. 2
b. 3
c. 4
d. 5
e. 6
f. 7
g. 8

Solution:
a. TRUE
b. TRUE
c. FALSE
d. TRUE
e. FALSE
f. TRUE
g. FALSE
4. Maxine says that prime factors of 50 are 2×25. Explain why she is incorrect. Make a factor tree to find the correct factors.
5. Which of these can be a prime factor of any other number?
A. 2
B. 4
C. 6
D. 9
6. Which of these are the prime factors of 60 ?
A. $2 \times 2 \times 5 \times 5$
B. $2 \times 2 \times 3 \times 5$
C. $4 \times 3 \times 5$
D. $2 \times 3 \times 3 \times 5$
7. How do you know when a factor tree branch cannot have any more branches?

Solution: 25 is not a prime number; $50=2 \times 5 \times 5$

Solution: A

Solution: B

Solution: If all branches become prime numbers

