tutorified

8.NS.A. 1 Classify Numbers as Rational or Irrational

8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

1 Which number is rational?

1) π
2) $\frac{5}{4}$
3) $\sqrt{7}$
4) $\sqrt{\frac{3}{2}}$

2 Which is a rational number?

1) $\sqrt{8}$
2) π
3) $5 \sqrt{9}$
4) $6 \sqrt{2}$

3 Which expression is rational?

1) π
2) $\sqrt{\frac{1}{2}}$
3) $\sqrt{3}$
4) $\sqrt{\frac{1}{4}}$

4 Which is an irrational number?

1) $\sqrt{9}$
2) 3.14
3) $\sqrt{3}$
4) $\frac{3}{4}$

5 Which is an irrational number?

1) 0
2) π
3) $-\frac{1}{3}$
4) $\sqrt{9}$

6 The number $0.14114111411114 \ldots$ is

1) integral
2) rational
3) irrational
4) whole

7 Which expression represents an irrational number?

1) $\sqrt{2}$
2) $\frac{1}{2}$
3) 0.17
4) 0

8 Which number is irrational?

1) $\sqrt{9}$
2) $\sqrt{8}$
3) 0.3333
4) $\frac{2}{3}$

9 Which is an irrational number?

1) $0 . \overline{3}$
2) $\frac{3}{8}$
3) $\sqrt{49}$
4) π

10 Which number is irrational?

1) $\frac{5}{4}$
2) $0 . \overline{3}$
3) $\sqrt{121}$
4) π

11 The value of $\sqrt{x^{2}-9}$ is a real and irrational number when x is equal to

1) 5
2) 0
3) -3
4) 4

12 Which number below is irrational?

$$
\sqrt{\frac{4}{9}}, \sqrt{20}, \sqrt{121}
$$

Why is the number you chose an irrational number?
13 Given: $\frac{\sqrt{99}}{11}, \sqrt{164}, \sqrt{196}$
Identify the expression that is a rational number and explain why it is rational.

14 Write an irrational number and explain why it is irrational.

tutorified

8.NS.A. 1 Classify Numbers as Rational or Irrational

8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that
every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

1 ANS: 2
$\frac{5}{4}$ is rational because it is the ratio of two integers.

2 ANS: 3
$5 \sqrt{9}$ is rational because it is the ratio of two integers, $\frac{15}{1}$.

3 ANS: 4
$\sqrt{\frac{1}{4}}=\frac{1}{2}$, the ratio of two integers.

4 ANS: 3
$\sqrt{3}$ is irrational as it may not be expressed as the ratio of two integers. $\sqrt{9}=\frac{3}{1} \quad 3.14=\frac{314}{100}$

5 ANS: 2
π may not be expressed as the ratio of two integers. $0=\frac{0}{1} \quad \sqrt{9}=\frac{3}{1} \quad-\frac{1}{3}=\frac{-1}{3}$

6 ANS: 3
The number $0.14114111411114 \ldots$ is irrational because it may not be expressed as the ratio of two integers. It is not a repeating decimal.

7 ANS: 1
$\sqrt{2}$ is irrational as it may not be expressed as the ratio of two integers. $\quad 0.17=\frac{17}{100} \quad 0=\frac{0}{1}$

8 ANS: 2
$\sqrt{8}$ is irrational as it may not be expressed as the ratio of two integers. $\sqrt{9}=\frac{3}{1} \quad 0.3333=\frac{3333}{10000}$

tutorified

8.NS.A. 1 Classify Numbers as Rational or Irrational

8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that
every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

9 ANS: 4
π is an irrational number as it may not be expressed as the ratio of two integers. $0 . \overline{3}=\frac{1}{3} \quad \sqrt{49}=\frac{7}{1}$

10 ANS: 4
π may not be expressed as the ratio of two integers. $0 . \overline{3}=\frac{1}{3} \quad \sqrt{121}=\frac{11}{1}$

11 ANS: 4
$\sqrt{x^{2}-9}=\sqrt{4^{2}-9}=\sqrt{7}$

12 ANS:
$\sqrt{20}$ is irrational because it may not be
expressed as the ratio of two integers.
$\sqrt{\frac{4}{9}}=\frac{2}{3}$
$\sqrt{121}=\frac{11}{1}$

13 ANS:
$\sqrt{196}$ because the number may be written as the ratio of integers. $\frac{\sqrt{99}}{11} \neq 3, \sqrt{\frac{99}{11}}=3$

14 ANS:
π because it may not be expressed as the ratio of two integers.

