Multiplication and Division Involving Variables

- 1. Write an expression using a variable. What does the variable represent?
 - a. John is twice as tall as Jim.
 - b. The cost of a jar of candies is \$8. Mr. Marcus bought a few jars.
 - c. Steven rented a car for a few days and paid \$256.
 - d. Cathy bought some shirts at the price of \$36 each.
 - e. Kelly distributed 48 pens among each desk equally.
- 2. Find the value of each of the expressions.

a.
$$30 + (52 - 8) \div 11$$

b.
$$125 - 4n$$
 if $n = 15$

c.
$$(3+a) + (126 \div b)$$
 if $a = 8$ and $b = 6$

d.
$$m \div 5 + 7n$$
 if $m = 100$ and $n = 4$

e.
$$14 + m \div 2b$$
 if $m = 60$ and $b = 6$

Solution:

- a.
- b.
- c.
- d.
- e.

Solution:

- a. _____
- h
- 0
- d.
- e. _____
- 3. Use the table to write an algebraic expression for each of the following.
 - a. Hannah bought *t* cups of milkshake. She had \$6 left with her. How much money did Hannah have?
 - b. Candice wanted to buy 3 cheeseburgers. She calculated that she can also buy *y* sandwiches with the left over money. How much money did Candice have?

Name	Prices (\$)
Milkshake	3
Cheeseburger	5
French Fries	3
Apple Pie	4
Sandwich	5

c. Kevin spent *x* dollars to buy French fries and distributed it to 5 of his friends. How much money did he spend on each of his friend?

Solution:

a.

b.

- c.
- 4. Jasmine paid \$100 to buy movie tickets. She received 2 bills of \$10 and 3 bills of \$1 as change. If each ticket cost *m* dollars, which expression shows the number of tickets that she bought? _____
 - a. $(100 2 \times 10 + 3 \times 1) \div m$

c. $m \div (100 - 2 \times 10 + 3 \times 1)$

b. $(100 - 2 \times 10 - 3 \times 1) \div m$

d. $(100 + 2 \times 10 + 3 \times 1) \div m$

Multiplication and Division Involving Variables

Answer Key

- 1. Write an expression using a variable. What does the variable represent?
 - a. John is twice as tall as Jim.
 - b. The cost of a jar of candies is \$8. Mr. Marcus bought a few jars.
 - c. Steven rented a car for a few days and paid \$256.
 - d. Cathy bought some shirts at the price of \$36 each.
 - e. Kelly distributed 48 pens among each desk equally.
- 2. Find the value of each of the expressions.

a.
$$30 + (52 - 8) \div 11$$

b.
$$125 - 4n$$
 if $n = 15$

c.
$$(3+a) + (126 \div b)$$
 if $a = 8$ and $b = 6$

d.
$$m \div 5 + 7n$$
 if $m = 100$ and $n = 4$

e.
$$14 + m \div 2b$$
 if $m = 60$ and $b = 6$

Solution:

- a. 2j (j = Jim's height)
- b. 8i (i = no. of jars bought)
- c. $256 \div c$ (c = no. of days Steven rented a car)
- d. 36s (s = no. of shirts bought)
- e. $48 \div d$ (d = no. of desks which got pens)

Solution:

- a. 34
- b. 65
- c. 32
- d. 48
- e. 194
- 3. Use the table to write an algebraic expression for each of the following.
 - a. Hannah bought *t* cups of milkshake. She had \$6 left with her. How much money did Hannah have?
 - b. Candice wanted to buy 3 cheeseburgers. She calculated that she can also buy v sandwiches with the left over money. How much money did Candice have?

Name	Prices (\$)
Milkshake	3
Cheeseburger	5
French Fries	3
Apple Pie	4
Sandwich	5

c. Kevin spent x dollars to buy French fries and distributed it to 5 of his friends. How much money did he spend on each of his friend?

Solution:

a.
$$3t + 6$$

b.
$$3 \times 5 + 5y$$
 c. $x \div 5$

c.
$$x \div 5$$

4. Jasmine paid \$100 to buy movie tickets. She received 2 bills of \$10 and 3 bills of \$1 as change. If each ticket cost m dollars, which expression shows the number of tickets that she bought? b

a.
$$(100 - 2 \times 10 + 3 \times 1) \div m$$

c.
$$m \div (100 - 2 \times 10 + 3 \times 1)$$

b.
$$(100 - 2 \times 10 - 3 \times 1) \div m$$

d.
$$(100 + 2 \times 10 + 3 \times 1) \div m$$